

 MZB-IDEA: Modular zertifizierbares Betriebssystem für Integrierte Design- und Entwicklungsumgebung für Aerospace

MZB-IDEA: Modular zertifizierbares Betriebssystem für Integrierte Design- und Entwicklungs-
umgebung für Aerospace

Dokument-Version 1.0

Datum 15.06.2023

Berichtszeitraum 01.04.2019-31.12.2022

Verbreitungsgrad Öffentlich

Projekt MZB-IDEA

Laufzeit 1.4.2019 – 31.12.2022

Förderkennzeichen FZK20Y1712J

Abschlussbericht SYSGO 01.04.2019-31.12.2022

 MZB-IDEA: Modular zertifizierbares Betriebssystem für Integrierte Design- und Entwicklungsumgebung für Aerospace

1 Kurzdarstellung

1.1 Aufgabenstellung

Die Luftfahrtindustrie steht vor der Herausforderung, sicher und energieeffizient eine wach-
sende Mobilität zu unterstützen. Dabei soll der Entwicklungsprozess für die Systemarchitektur
zur Auslegung neuer fehlertoleranter, sicherheitskritischer Systemarchitekturen und neuer
Systemkomponenten, unterstützen und somit die Beherrschung immer komplexer werdender
Systeme erleichtern. Langfristig können somit Systementwicklungs- und die Fertigungskosten
reduziert werden. Auch führt die Standardisierung von Schnittstellen und Definition gemeinsa-
mer generischem Datenaustauschformate zu Erleichterungen der Wartung. Die Verbesserung
der Entwicklung von sicheren eingebetteten Systemen, ermöglicht leistungsfähige und sichere
Gesamtsysteme in der Zukunft, insbesondere weil im Bereich Cybersicherheit zukünftige War-
tungsprozesse durch nötige Sicherheitsupdates beeinflusst werden.

Das Ziel des Gesamtvorhabens von IDEA war die Definition einer integrierten Entwicklungs-
umgebung für Avionik. Der Methoden- und Toolbaukasten soll für den gesamten Entwicklungs-
prozess von fehlertoleranten, sicherheitskritischen eingebetteten Systemen, auf die Belange
(Zulassungsaspekte) der Luftfahrtindustrie in Einklang mit Flightpath 2050, zugeschnitten sein.
Dies wurde unter anderem durch ein breites Spektrum an teilnehmenden Unternehmen (Sys-
temhersteller/OEM, Zulieferer/TIER1, Dienstleister und Technologielieferanten/Hochschulen
und Forschungseinrichtungen) gewährleistet.

Die Motivation für das Teilvorhaben IDEA-MZB ist folgende: Bisher wurde bei SYSGO MILS-
Integration zumeist auf Projektebene, aber wenig aus System- und Toolsicht betrieben. Ziel
des Teilvorhabens MZB-IDEA ist es, unsere Erfahrung in Partitionierung auch bei Systement-
wicklungs- und Toolprozessen einzubringen, unsere Position in den Querschnittsthemen
Funktionaler- und Cybersicherheit zu stärken und die Projektschnittstellen für unser Entwick-
lungsumgebung zu verbessern.

1.2 Voraussetzungen, unter denen das Vorhaben durchgeführt wurde

Eine sichere, skalierbare, performante und wiederverwertbare Systemarchitektur ist der
Grundstein der Gesamtsystementwicklung. Die Systemarchitektur muss sorgfältig ausgelegt
und aus verschiedenen Perspektiven, wie z.B. Funktionale- und Cybersicherheit, geprüft und
bewertet werden. Eine nahtlose, integrierte Verarbeitung der erfassten Daten in dem Gesamt-
systementwicklungsprozess trägt zur Beherrschung der Komplexität bei. Die auf dem Markt
vorhandenen Methoden und Werkzeuge zur Entwicklung von sicheren, skalierbaren und wie-
derverwendbaren Systemarchitekturen sind zwar sehr vielfältig aber nicht hinreichend abde-
ckend und integriert. Dies führt zu Methodenbrüchen und Daten-Inkonsistenzen, da für ein-
zelne Entwicklungsschritte wieder auf klassische Methoden wie textuelle Anforderungen, ma-
nuelle Checklisten und Folienpräsentationen zurückgegriffen werden muss.

Die Entwicklung findet auf den unterschiedlichen Auslegungs- und Integrationsebenen (Sys-
tem-Software, Software-Hardware) heutiger Luftfahrtsysteme im Wesentlichen isoliert statt.
Ein Austausch von Daten (z.B. Modellen) geschieht nur in zu großen Abständen und unter

Abschlussbericht SYSGO 01.04.2019-31.12.2022

 MZB-IDEA: Modular zertifizierbares Betriebssystem für Integrierte Design- und Entwicklungsumgebung für Aerospace

großen technischen und formalen Problemen, wie z.B. der unklare formale Status, die Anpas-
sung der Daten an unterschiedliche Entwicklungsumgebungen und Standards sowie unter-
schiedliche Anforderungen an den Detaillierungsgrad der Modelle auf den unterschiedlichen
Ebenen. So ist z.B. auch die Standardisierung der APIs von MILS-Systemen keineswegs ab-
geschlossen. Daher können potentielle Vorteile aktueller Verfahren nicht hinreichend genutzt
werden. Heute existieren weder geeignete Modelle für den Austausch von Daten, noch sind
die eingesetzten Tools vollumfänglich funktional geeignet, um diesen Transfer zu ermöglichen.
Die Definition eines adäquaten Datenmodells zur Verwendung in allen Domänen ist die we-
sentliche Voraussetzung für eine domänenübergreifende Kooperation und Integration.

1.3 Planung und Ablauf des Vorhabens

Die folgende Tabelle gibt Planung und Ablauf der für das Teilvorhabens relevanten Teilpro-
jekte an:

Teilprojekt Name Zeitraum

TP1 Produktentwicklungsprozess M1-M15

TP2 Domänenschnittstellen M1-M24

TP3 Anwendungsfälle M13-M45

TP4 Querschnittsthemen M6-M45

1.4 Wissenschaftliche und technische Ausgangslage

PikeOS ist ein Betriebssystem, welches explizit für den Einsatz in sicherheitskritischen Umge-
bungen entwickelt wird. Es ist zudem für Zertifizierbarkeit ausgelegt, sodass es bereits im Luft-
fahrt- und Automobilbereich sowie in der Bahntechnik zum Einsatz kommt.

Die zu erwartende Komplexität zukünftiger Luftfahrtanwendungen mit einer Vielzahl verteilter,
teilweise autonomer Systeme unterschiedlichen Absicherungslevels sowie einer Zunahme von
Anzahl und Komplexität der Schnittstellen erschweren dramatisch die Analyse und die Sicher-
stellung der Absicherung der Systeme gegen nicht autorisierte, bösartige Eingriffe von außen.
Auf dem Markt existieren bereits viele Standards, Prozesse, Methoden und Werkzeuge, die
die Anforderungen an die Cyber-Sicherheit stellen, die Bedrohungsszenarien modellieren und
die Entwicklung sicherer Systeme unterstützen. Diese sind jedoch stark auf Web-basierte Sys-
teme zugeschnitten, behandeln meistens nur einen Aspekt (Cyber-Sicherheit) und gehen nicht
auf die Bedürfnisse der Luftfahrt ein (Funktionale, fehlertolerante und sichere Systeme). Wei-
terhin bieten die vorhandenen Methoden und Werkzeuge keine Unterstützung für integrierte
Methoden und Entwicklungsumgebungen von sicheren Systemen.

1.5 Zusammenarbeit mit anderen Stellen

SYSGO arbeitete im Verlauf des Projektes mit der europäischen Behörde für Flugsicherheit
(EASA) in einem Workshop zu Zertifizierungsaspekten zusammen.

Abschlussbericht SYSGO 01.04.2019-31.12.2022

 MZB-IDEA: Modular zertifizierbares Betriebssystem für Integrierte Design- und Entwicklungsumgebung für Aerospace

2 Eingehende Darstellung der Arbeiten und Ergebnisse

2.1 TP1 Produktentwicklungsprozess

Wir haben die Separation-Kernel-Architektur und für eine effiziente DAL-A und Security-Zerti-
fizierung relevanten Aspekte (Standards, Methoden und Werkzeuge für System-Modellierung
und Analyse) analysiert, mit Schwerpunkt auf Interpretation von Interferenzen, Konfigurations-
analyse, wobei Performance und WCET stets mit im Auge behalten wurden. SYS hat dabei
mit (z.B. in IDEA-Workshops) mit allen anderen Partnern zusammengearbeitet.

In TP1.1 hat SYSGO bei Standards die ISO 15408 (Common Criteria for Information Techno-
logy Security Evaluation / CC) also z.B. Bedrohungsanalyse vorgestellt, einschließlich Pra-
xiserfahrung bei SYSGO, z.B. das Sicherheitsziel von PikeOS. Wir haben auf Beispiele für
Verwendung in der Avionik hingewiesen. SYSGO ist dabei auch auf Cyber-Sicherheitsthemen
in anderen Avionik-Standards eingegangen, z.B. DO-356 (2014) und DO-356A (2018) und
diese Ergebnisse wurden beim IDEA-Workshop vorgestellt. Unter Konzepten und Methoden
hat SYSGO MILS (Multiple Independent Levels of Safety / Security) aus dem Projekt EURO-
MILS vorgestellt. Wir haben EURO-MILS-Erfahrungen zur Erstellung flugtauglicher gemischt-
kritischer Systeme unter Verwendung von Trennungskernen und Partitionierung dargestellt.
Ebenso hat SYSGO in gemeinsamen Diskussionen mit Partnern andere Anforderungen und
Definitionen diskutiert und verbessert.

SYSGO hat vom 22.-24.10.2019 mit zwei Projektpartnern (Avionik und Weltraum) einen
PikeOS-Workshop durchgeführt, in dem die Konzept und Benutzung von PikeOS erklärt wur-
den (z.B. die Verwendung von virtualisiertem Linux auf dem PikeOS-Hypervisor, Volume-Pro-
viders).

2.2 TP2 Domänenschnittstellen

Wir haben mit Partnern gemeinsam den Weg von grafischer Benutzerschnittstelle in eine XML-
Schnittstelle aus Sicht eines Systemintegrators diskutiert, und ob hier weitere Modellierung
und / oder Verifikation ansetzen kann. Z. B. ist unter Gesichtspunkten der Produktentwicklung
bei SYSGO eine Trennung von PSP und ASP geboten; aus Nutzersicht hingegen auf einem
Board-Support-Package aus funktionaler Sicht der HW-SW-Schnittstelle PSP und ASP eng
verbunden sind, und in Schnittstellenmodellen z. T. einheitlich betrachtet werden können.

Eine der Hauptfunktionen eines Betriebssystems ist Hardwareabstraktion für Software. Auch
ein minimiertes Betriebssystem wie ein Trennungskern spannt sich in natürlicher Form über
die Domänenschnittstelle zwischen sowie Software und Hardware. Das heißt, bei einem Tren-
nungskern (Separation Kernel) wird die genaue Hard-/Softwareschnittstelle zur Laufzeit durch
die Konfiguration zur Integrationszeit bestimmt, und der hierbei gegenüber einem herkömmli-
chen Betriebssystem größere Determinismus ist eines der Hauptfunktion eines Trennungs-
kerns. Aus diesem Grund haben wir uns entschlossen, die geplanten modellbasierten Entwick-
lungen mit dem Konfigurationswerkzeug eines Echtzeittrennungskerns von SYSGO zu verbin-
den. Um spätere Verwertungsmöglichkeiten zu unterstützen, ist die von uns gewählte Heran-
gehensweise, dass wir dabei auch untersuchen, wie wir eine gute Produktintegration schaffen,
essentiell. Diesbezüglich haben wir insbesondere zunächst einen bereits existierenden Ansatz
untersucht, der auf dem W3C Document Object Model (DOM) beruht.

Abschlussbericht SYSGO 01.04.2019-31.12.2022

 MZB-IDEA: Modular zertifizierbares Betriebssystem für Integrierte Design- und Entwicklungsumgebung für Aerospace

2.2.1 Verwendung von Eclipse Modeling Framework

Die Avionik braucht zuverlässige Betriebssysteme, die ein vorhersehbares Laufzeitverhalten
haben und daher statisch konfiguriert werden. SYSGO‘s PikeOS ist ein Betriebssystem, wel-
ches für konkrete Anwendungen statisch von einem Systemintegrator konfiguriert wird, z.B.
Allokation von Ressourcen und Kommunikationsprimitiven wir Ports, Shared Memory, usw.
Dieses wird derzeit mit einer graphischen Benutzeroberfläche und einem selbstdefinierten
XML-Format realisiert. Wir haben untersucht, wie dieser Konfigurationsansatz mit der Eclipse-
Modeling-Framework realisiert werden kann.

Motiviert durch den Erfahrungsaustausch u.a. mit Partnern haben wir uns danach mit der Si-
rius-Plattform im Speziellen und dem generischen Eclipse-Modeling-Framework auseinander-
gesetzt, und eine Beispielskonfigurationsgenerator unter Verwendung eines Eclipse-Mode-
ling-Framework -Modells geschaffen. Wir haben dann Viewpoint Specification Models („ode-
sign“-Format) dazu verwendet, bestimmte Ansichten zu erstellen, beispielsweise, falls der Nut-
zer diese Sicht will, um eine Partition zu verbergen kann er somit eine bessere Sichtbarkeit
realisieren. In einem zweiten Demonstrationsprojekt haben wir diese Viewpoint Specification
Models dazu verwendet, um Überlappungen von Speicherallokationen zu entdecken, dabei
wurden Queries in AQL (Acceleo Query Language) formuliert.

In Hinblick auf Ansichten, haben wir untersucht, inwieweit Darstellungen von EMF-Modellen
mit Sirius OBEO dynamisch dargestellt werden können (z.B. das optionale Verbergen einer
für den Nutzer nicht unbedingt notwendigen Systempartition). Des Weiteren wollten wir ver-
stehen, wie logische Anforderungen mit EMF geprüft werden können und haben hierzu die
Mächtigkeit der Acceleo Query Language (AQL) analysiert.

Wir haben einen Export als UML XMI erzeugt, um zu validieren, dass Papyrus als weiteres
Entwicklungstool genutzt werden kann.

Abschlussbericht SYSGO 01.04.2019-31.12.2022

 MZB-IDEA: Modular zertifizierbares Betriebssystem für Integrierte Design- und Entwicklungsumgebung für Aerospace

Abbildung 1: CODEO-Detailsichten

Wie in Abbildung 1 gezeigt, bietet CODEO eine Detailsichten an, die Aufgabenstellung: ver-
schiedene Detaillierungsgrade darstellen, z.B. Boardeinstellungen, Cache-Partitionen usw. Im
linken Teil der Abbildung ist die traditionelle Konfiguration gezeigt (GUI), im mittleren Teil eine
XML-Darstellung und im rechten Teil, eine Darstellung in Eclipse Modeling Framework-Modell.

Abbildung 2: Modell: SK -> System partition: MVP

Abbildung 2 zeigt eine Zuordnung von Memory Anforderungen zu Partitionen.

Abbildung 3: Verbergen einer Partition

Abschlussbericht SYSGO 01.04.2019-31.12.2022

 MZB-IDEA: Modular zertifizierbares Betriebssystem für Integrierte Design- und Entwicklungsumgebung für Aerospace

Wir haben untersucht, inwieweit Darstellungen von EMF-Modellen mit Sirius OBEO dynamisch
dargestellt werden können. Abbildung 3 zeigt die Verwendung der Acceleo Query Language
(AQL), um eine bestimmte Partitionen aus dem Modell nicht anzuzeigen. Diese Funktionalität
ist relevant, um abzuschätzen, ob in EMF-Modell Sichten dieser Art realisieren werden kön-
nen.

2.2.1.1 UMI-Interface

Ein gängiges Austauschformal für Modelle ist UML XMI (XML Metadata Interchange). Wir
haben einen Export des zuvor hergestellten Eclipse EMF Modells als UML XMI erzeugt, um
zu validieren, dass Papyrus als weiteres Entwicklungstool genutzt werden kann.

Ein Ausschnitt des Export-UMLs mit XMI-Header ist in Abbildung 4 dargestellt und zeigt die
Verwendung des Schemas von EMF / Ecore als Namensraum.

<?xml version="1.0" encoding="UTF-8"?>

<xmi:XMI xmi:version="20131001" xmlns:xmi="http://www.omg.org/spec/XMI/20131001"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:Ecore="http://www.eclipse.org/uml2/schemas/Ecore/5"

xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore"

xmlns:uml="http://www.eclipse.org/uml2/5.0.0/UML" xsi:schemaLoca-

tion="http://www.eclipse.org/uml2/schemas/Ecore/5 pathmap://UML_PRO-

FILES/Ecore.profile.uml#_z1OFcHjqEdy8S4Cr8Rc_NA">

 <uml:Model xmi:id="_s5tFgPI4Eeuqydw3K0g_xw" name="MILSSystem"

URI="htttp://sysgo.idea">

[…]

Abbildung 4: XMI header

Eine Sicht in Eclipse als UML-Diagramm ist in Abbildung 1 wiedergegeben.

Abschlussbericht SYSGO 01.04.2019-31.12.2022

 MZB-IDEA: Modular zertifizierbares Betriebssystem für Integrierte Design- und Entwicklungsumgebung für Aerospace

Abbildung 5: Eclipse-Sicht von UML XMI

Abbildung 6: Prüfung von Eindeutigkeit der Memory-Zuweisung

Abschlussbericht SYSGO 01.04.2019-31.12.2022

 MZB-IDEA: Modular zertifizierbares Betriebssystem für Integrierte Design- und Entwicklungsumgebung für Aerospace

Abbildung 6 zeigt die Verwendung von Acceleo Query Language (AQL) um die Eindeutigkeit
von Memory-Zuordnungen zu analysieren.

2.2.2 Unterstützung von Speicherpartitionierung

Als hardwarenahe Maßnahme zur Leistungssteigerung und Erhöhung des Determinismus in
MILS Separation Kernels haben wir Arbeiten bei einem Partner zur Speicherpartitionierung
dokumentiert und entsprechend unterstütz (z.B. mit Hinweisen zur Konfiguration und Perfor-
manceevaluierung). Unsere Speicherpartitionierung erlaubt nun eine in PikeOS-Integrations-
projekte eingefasste Konfiguration auf Partitionsebene in genau definierte zusammenhän-
gende Speicherbereiche zu fassen. Hier waren lange Zeit nur direkte Manipulationen über das
PSP möglich,

2.3 TP3 Anwendungsfälle

Im Moment sind in der Luft- und Raumfahrt verschiedene CPU-Prozessorarchitekturen (z.B.
PowerPC, ARM R52, ARM A Cores, RISC-V) auf dem Markt. Portabilität durch Hardwareabs-
traktion ist daher wünschenswert. Wir haben Architekturen (z.B. für die Anwendungsfälle von
Mehrpartitionssystemen mit Multiprozessor Hardware Abstraction Layer (HAL), portabler Sig-
nalkomponente unter Verwendung von HAL, Sicherheitsinfrastruktur, Sicherheitsgateway mit
„Ready-to-Run-Konfiguration“) in Avionik entworfen und verfeinert.

2.3.1 Gemischt kritischer Demonstrator für Weltraumanwendung

.

Abbildung 1: Partitionslayout

Im gemischt kritischen Demonstrator für Weltraumapplikationen wird der Chipsatz von NXP
PowerPC P4080 verwendet, einschließlich Netzwerkschnittstelle DPAA (data path accelera-
tion architecture). Im Demonstrator kommuniziert ELinOS Embedded Linux mit anderen
PikeOS-Partitionen über PikeOS-Queuingports, die innerhalb von ELinOS als Linux-Charde-
vice abgebildet werden. Eine Kommunikationspartition verbindet beide Anwendungen. Wir
wählen eine Realisierung als drei Entwicklungsprojekte, davon eine Applikation zu Kommuni-
kationspartitionen, eine Integrationsprojekt für ELinOS Embedded Linux, und ein Integrations-
projekt für das Gesamtsystem, das auch andere Binäranwendungen des Satellitensystems
integriert. ELinOS erlaubt es, das Embedded-Linux-System mit einem zentralen grafischen
Benutzeroberfläche zu konfigurieren, z.B. für die Konfiguration von Netzwerk und SSH-Server.
Python wurde über ein externes Dateisystem eingebunden, das bei der Kompilation in das
übersetzte Programm „Binary“ eingefügt wurde. Die Kommunikationspartition enthält eine

Abschlussbericht SYSGO 01.04.2019-31.12.2022

 MZB-IDEA: Modular zertifizierbares Betriebssystem für Integrierte Design- und Entwicklungsumgebung für Aerospace

Custom-App zum Auslesen von Queuingports. Der Anwendungsfall wurde in einem Laborsys-
tem aufgesetzt, mit den Features: SSH-Zugang, Python (zunächst Python2, dann Python3),
und Kommunikation von ELinOS nach PikeOS.

Im Demonstrator kommuniziert ELinOS Embedded Linux mit anderen PikeOS-Partitionen über
PikeOS-Queuingports, die innerhalb von ELinOS als Linux-Chardevice abgebildet und ange-
sprochen werden. Eine Kommunikationspartition verbindet beide Anwendungen. Die Kommu-
nikationsarchitektur mit ELinOS und nativen-Applikationen wurde auch auf den PowerPC-
qemu-Emulator portiert und ebenfalls Airbus als Projekte zur Verfügung gestellt. Für die Er-
weiterung der ELinOS-Partition wurde die zugehörige Infrastruktur erweitert, d.h diese wurde
auf der passenden Entwicklungsumgebung neu gebaut. Dazu wurde ein Custom-RPM gene-
riert (Schreiben von Specfile und Bau von RPM mit dem Kreuzkompiler für die PowerPC-Ar-
chitektur), was einen vorhergehenden Ansatz, Python3 über die CODEO-app.rootfs-Schnitt-
stelle manuell anzubinden, ersetzt. Zudem wurde das venv-Modul als virtuelle Pythonumge-
bung bereitgestellt, um für verschiedene Python-Anwendungen verschiedene Abhängigkeits-
bäume realisieren zu können.

Wir haben die Cybersecurity-Demonstrator-Architektur validiert in Hinblick auf Gast-Pythonan-
wendungen, mögliche Integrationsszenarien für die pip-3-Installation (Filesystem,
RAMFS/scriptbasiert/Netzwerkmount) und auch die mögliche Portabilität auf MPU diskutiert.

Auf dem Anwendungsfall haben wir einen speziellen Treiber für die DPAA (Data Path Accele-
ration Architecture) eingesetzt, der einen minimalen Code-Footprint hat (weitere Details zu
dem Treiberdesign siehe Bericht vom Februar 2022 über 2. HJ 2021). Insbesondere haben
wir im Berichtszeitraum ASI bei der Konfiguration von DPAA2 für die Linux-Partition (siehe
Abbildung 2) und Allokation der Linux-RAMDisk unterstützt.

Fehler! Verweisquelle konnte nicht gefunden werden. zeigt das Satellitendemo: ELinOS
kommuniziert mit der anderen PikeOS-Partitionen über PikeOS-Queuingports, die innerhalb
von ELinOS als Chardevice abgebildet werden. Eine Kommunikationspartition kann verwendet
werden, um Linux mit anderen Anwendungen kommunizieren zu lassen..

Abbildung 7: Anlegen der Projekte

Abbildung 7 zeigt eine Realisierung als drei Entwicklungsprojekte, davon eine Applikation zu
Kommunikationspartitionen, ein Integrationsprojekt für ELinOS Embedded Linux, und ein In-
tegrationsprojekt für das Gesamtsystem, das auch andere Binäranwendungen des Satelliten-
systems integriert.

Abschlussbericht SYSGO 01.04.2019-31.12.2022

 MZB-IDEA: Modular zertifizierbares Betriebssystem für Integrierte Design- und Entwicklungsumgebung für Aerospace

Abbildung 8: Integration in Baseline, Konfiguration Netzwerk und SSH

Das Integrationsprojekt bindet insbesondere Satellitenanwendungen ein (Abbildung 8 links).
ELinOS erlaubt es, das Embedded-Linux-System mit einem zentralen GUI zu konfigurieren.
Abbildung 8 rechts zeigt die Konfiguration von Netzwerk und SSH-Server.

Abschlussbericht SYSGO 01.04.2019-31.12.2022

 MZB-IDEA: Modular zertifizierbares Betriebssystem für Integrierte Design- und Entwicklungsumgebung für Aerospace

Abbildung 9: DPAA-Nutzung

Als Netzwerkschnittstelle wird NXP PowerPC P4080 DPAA (data path acceleration architec-
ture) verwendet (Abbildung 9).

Abschlussbericht SYSGO 01.04.2019-31.12.2022

 MZB-IDEA: Modular zertifizierbares Betriebssystem für Integrierte Design- und Entwicklungsumgebung für Aerospace

Abbildung 10: Einbinden von Python in ELinOS und Kompilation.

Abbildung 10 zeigt, dass wir Python über ein externes Dateisystem eingebunden haben, das
bei der Kompilation in das Binary eingefügt wird.

Abbildung 11: Kommunikationspartition über Queuing Port

Abbildung 11 zeigt das Auslesen eines Queuingports in der Kommunikationspartition.

Abschlussbericht SYSGO 01.04.2019-31.12.2022

 MZB-IDEA: Modular zertifizierbares Betriebssystem für Integrierte Design- und Entwicklungsumgebung für Aerospace

Abbildung 12: Ausführung im Lab

Abbildung 12 zeigt den Zugang zum Demonstrator über die Muxa-Schnittstelle.

Abbildung 13: Python in ELinOS

Abbildung 13 zeigt die Ausführung von Python auf dem Satellitendemonstrator.

Abschlussbericht SYSGO 01.04.2019-31.12.2022

 MZB-IDEA: Modular zertifizierbares Betriebssystem für Integrierte Design- und Entwicklungsumgebung für Aerospace

Abbildung 14: Schreiben von ELinOS auf Kommunikationspartition

Abbildung 14 zeigt die Kommunikation von Linux nach PikeOS: ELinOS virtualisiert Queuing-
Ports als Char-Devices. Die Abbildung zeigt links ein Bild von einer Linux-Partition und rechts
oben über den Muxa-Output das Ankommen der Nachricht auf dem Demonstrator („Read
<Hello into PikeOS partition > from qport“).

Die ELinOS-Partition im Satellitendemo wurde um Python3 und die zugehörige Infrastruktur
erweitert, dh diese wurde auf der passenden Buildumgebung neu gebaut. Dazu wurde ein
Custom-RPM generiert (Schreiben von Specfile und Bau von RPM mit dem Kreuzkompiler für
die PowerPC-Architektur), was einen vorhergehenden Ansatz, Python3 über die CODEO-
app.rootfs-Schnittstelle manuell anzubinden, ersetzt. Zudem wurde das venv-Modul als virtu-
elle Pythonumgebung bereitgestellt, um für verschiedene Python-Anwendungen verschiedene
Abhängigkeitsbäume realisieren zu können.

Abbildung 15 zeigt den Inhalt von Python3 für ELinOS (geöffnet mit rpm2cpio).

Abschlussbericht SYSGO 01.04.2019-31.12.2022

 MZB-IDEA: Modular zertifizierbares Betriebssystem für Integrierte Design- und Entwicklungsumgebung für Aerospace

Abbildung 15: Inhalt von Custom-RPM Python 3 für ELinOS 6.2

Zunächst muss das Custom-RPM auf dem Host installiert werden mit „/opt/elinos-6.2/bin/eli-
nos-rpm -i elinos-python3-ppc_e500mc-glibc-2.24-3.7.3-testversion.noarch.rpm“. Danach
wird im ELinOS-Konfigurator der RPM-Inhalt vom Local File Systems des Hosts in dem Ziel-
Filesystem hinzugefügt. Der ELinOS-Konfigurator bietet eine Vorschau des Ziel-Filesystems.
Beim Übersetzen des Projektes wird das Ziel-Filesystem nach den Vorgaben der Konfiguration
erstellt und in die Boot Dateien integriert.

Abbildung 16 zeigt die Installation von Python3, wobei die Dateien des installierte RPMs vom
„Local File System“ ins Target File System kopiert werden.

Abbildung 16: Installation von Python 3 für ELinOS 6.2 über File System Configuration

Abbildung 17 und Abbildung 18 zeigen die erfolgreiche Ausführung von Python 3 auf einem
Embedded-Target P4080DS auf ELinOS und PikeOS (Labor Mainz).

Abschlussbericht SYSGO 01.04.2019-31.12.2022

 MZB-IDEA: Modular zertifizierbares Betriebssystem für Integrierte Design- und Entwicklungsumgebung für Aerospace

Abbildung 17: Ausführung von Python 3 auf Avionik-PowerPC P4080DS (Lab Mainz): Py-
thon-Konsole

Linux version 4.9.231-ELinOS-1825-rt149 (hbl@hbl-laptop) (gcc version 6

.3.0 20170516 (GCC)) #3 Mon Aug 2 10:33:43 CEST 2021

bootconsole [sswcon0] enabled

dtb= parameter not provided, the kernel may fail to boot

On node 0 totalpages: 77856

free_area_init_node: node 0, pgdat 00491374, node_mem_map 12db5000

 DMA zone: 609 pages used for memmap

 DMA zone: 0 pages reserved

 DMA zone: 77856 pages, LIFO batch:15

pcpu-alloc: s0 r0 d32768 u32768 alloc=1*32768

pcpu-alloc: [0] 0

Built 1 zonelists in Zone order, mobility grouping on. Total pages: 77

247

Kernel command line: params=rfs:linux.params initrd=auto earlyprintk vm

file_net=0,eth0:/1 fpeth=3:eth1:/1’ console=tty0 console=ttyFP0,muxa:

Abschlussbericht SYSGO 01.04.2019-31.12.2022

 MZB-IDEA: Modular zertifizierbares Betriebssystem für Integrierte Design- und Entwicklungsumgebung für Aerospace

/linux

loading initial ramdisk from file rfs:/linux.initrd, size 18551786 byte

s

PID hash table entries: 2048 (order: 1, 8192 bytes)

Dentry cache hash table entries: 65536 (order: 6, 262144 bytes)

Inode-cache hash table entries: 32768 (order: 5, 131072 bytes)

Sorting __ex_table...

Memory: 285404K/311424K available (3420K kernel code, 253K rwdata, 692K

 rodata, 188K init, 278K bss, 26020K reserved, 0K cma-reserved)

vmalloc area: 0x13320000 - 0x80000000

PikeOS memory usage: 2035732k total, 443720k used, 1592012k free

SLUB: HWalign=64, Order=0-3, MinObjects=0, CPUs=1, Nodes=1

NR_IRQS:640

Info: DTB does not contain sysgo,p4int definition

clocksource: p4_timer: mask: 0xffffffffffffffff max_cycles: 0x1cd42e4d

ffb, max_idle_ns: 881590591483 ns

Timer IRQ 512 for CPU#0 started

Console: colour dummy device 80x25

standard input

Abbildung 18: Ausführung auf Avionik-PowerPC P4080DS (Lab Mainz): DMESG zeigt den
Kernelringspreicher

Abbildung 19 zeigt Initialisierung und Test von pip (Package Installer for Python) auf dem Tar-
get.

Abbildung 19: Aufsetzen von pip (Package Installer for Python)

Abschlussbericht SYSGO 01.04.2019-31.12.2022

 MZB-IDEA: Modular zertifizierbares Betriebssystem für Integrierte Design- und Entwicklungsumgebung für Aerospace

2.3.2 Zertifizierbare POSIX API

Abbildung 2: Partitionierung DPAA2-Treiber auf ELinOS

Mit dem Ziel einer kleinen zertifizieren Codebasis haben wir zudem Untersuchungen gemacht
zu einer minimalen POSIX-API. Bei den POSIX real-time Profilen bieten sich für kleine Safety-
kritische Systeme in der Avionik und im Verkehrswesen PSE51 und PSE52 an (Abbildung 3).

Abbildung 3: POSIX Subprofile

Abschlussbericht SYSGO 01.04.2019-31.12.2022

 MZB-IDEA: Modular zertifizierbares Betriebssystem für Integrierte Design- und Entwicklungsumgebung für Aerospace

Zusätzlich haben wir mehrere Standards und Implementierungen von Echtzeit-/Betriebssys-
temen wie

RTEMS, zephyr, Phoenix Systems, freertos sowie SCA application profile1 durchgesehen. Als

Ausgangspunkt haben wir zunächst Daten von RTEMS2 verwendet und diese dann durch öf-
fentliche Daten zu den APIs von zephyr, Phoenix Systems, freertos sowie SCA application
profile ergänzt (Abbildung 4). Das Gesamtbild zeigt, dass neben der POSIX-Profilunterstüt-
zung die meisten RTOS die Funktionsprofile recht selektiv unterstützen.

Abbildung 4: Untersuchung API (Ausschnitt)3

Um die Arbeit zu vereinfachen, haben wir die ASI-Lizenz auf Floating-Lizenz umgestellt, so
dass sie innerhalb der ASI-Virtualisierungsumgebung genutzt werden kann.

Weiterhin haben wir ASI unterstützt beim Aufsetzen virtueller Netzwerke, dem Aufsetzen von
Chardevices zwischen ELinOS und PikeOS und bei der Integration der Erzeugung der Boot
Dateien für die Targets P4080DS und PowerPC-qemu in der ASI eigenen Bauinfrastruktur.

1 https://media.defense.gov/2020/Feb/13/2002249009/-1/-

1/1/SCA_4.1_APP_B_SCAAPPLICATIONENVIRONMENTPROFILES.PDF
2 https://git.rtems.org/rtems-docs/tree/posix-compliance/RTEMS-Standards-Compliance.csv
3 https://svn.sysgo.com/viewvc/17132/trunk/tech/api-compliance/

Abschlussbericht SYSGO 01.04.2019-31.12.2022

 MZB-IDEA: Modular zertifizierbares Betriebssystem für Integrierte Design- und Entwicklungsumgebung für Aerospace

2.4 TP4 Querschnittsthemen

Es wurden relevante Standards & Guidelines identifiziert und analysiert. Hierbei wurde der
„state of the art“ aus der Avionik sowie Common Criteria im Detail analysiert.

SYSGO hat diesbezüglich die DO-356 und DO-356A analysiert. Diese wurden in einem ange-
nommenen Vortrag auf CTIC (https://blog.sysgo.com/join-us-at-the-certification-together-in-
toulouse) eingebracht. Wir haben uns vertieft mit relevanten Standards wie CAST-32A be-
schäftigt, sowohl auf Architekturebene und wie diese geeignet mit Tools analysiert werden
können (z.B. Gespräche mit Hersteller von Coveragetools). Darüber hinaus haben wir die
Standards der Multicore Association, MTAPI (Multicore Task API), MRAPI (Multicore Resource
API, z.B. Shared Memory), MCAPI (Multicore Communication API), SHIM Software Hardware
Interface for Multi-/Manycore angefordert und erhalten und diese in Hinblick auf Multicorean-
forderungen analysiert. Des Weiteren wurde ein Webinar zu Verwendung von DO-356A erstellt
und gegeben. -> https://www.youtube.com/watch?v=1uTs3Es6ixU Eine Gemeinsamkeit ist
hier, dass Top-Down-Analysen gewählt werden. Auch war unser PikeOS-Security-Target
durchaus hilfreich dabei, Assets zu identifizieren. Anders als bei der Analyse von Applikations-
software können verbreitete Analysemethoden wie Kemmerers Shared-Ressource-Matrix
oder einfache Taint-Analyse nicht abbilden, da es bei Systemsoftware viele Fälle von Res-
sourcenwiederverwertung gibt, die an sich auch gewollt sind, da sie abgesichert werden kön-
nen wie z.B. Register beim Kontextswitch.

2.4.1 AC20-193/AMC20-193

Wir haben eine Analyse des Updates AC20-193/AMC20-193 des Avionikstandards CAST-32A
für Multicore (z.B. in Hinblick auf Hardware-/Softwareressourcen) gemacht (Abbildung 20).

https://blog.sysgo.com/join-us-at-the-certification-together-in-toulouse
https://blog.sysgo.com/join-us-at-the-certification-together-in-toulouse
https://www.youtube.com/watch?v=1uTs3Es6ixU

Abschlussbericht SYSGO 01.04.2019-31.12.2022

 MZB-IDEA: Modular zertifizierbares Betriebssystem für Integrierte Design- und Entwicklungsumgebung für Aerospace

Abbildung 20: Analyse AC20-193/AMC20-193: Beispiel MCP_Planning_2 (Auszug)

2.4.2 Analyse geteilter Ressourcen

Multicore-Architekturen werden in der Avionik zunehmend wichtig, und hierzu ist die CAST-
32A und AC 20-193-Guidance anzuwenden, die wir bereits analysiert haben und ein Schwer-
punkt liegt in der Analyse geteilter Ressourcen.

Abschlussbericht SYSGO 01.04.2019-31.12.2022

 MZB-IDEA: Modular zertifizierbares Betriebssystem für Integrierte Design- und Entwicklungsumgebung für Aerospace

Hier haben wir uns nun darauf konzentriert, einen einfachen Ansatz zur Identifikation von ge-
teilten Ressourcen zu machen. In IDEA hatte zuvor ein IDEA-Projektpartner eine Graphenda-
tenbank (Neo4j4) zur Analyse von Anforderungen verwendet. Eine derartige Graphdatenbank
ist zum einen auf Performanz bei Analyse komplexer Grafen optimiert und andererseits bietet
sie eine Beschreibungssprache die für hierarchische Strukturen geeignet ist. Die Idee der Ver-
wendung einer Graphdatenbank haben wir in dieser Arbeit aufgegriffen, um ein Framework
herzustellen um geteilte Ressourcen identifizieren zu können. Hiermit können die mögliche
Quellen von Interferenz in sicherheitskritischen Anwendungen ermittelt werden.

Dazu haben wir die Konfigurationsdateien von SYSGOs PikeOS-Integrationsprojekten
(vmit4.xml) umgewandelt mit XSLT Stylesheets und dem Saxon-B XSLT-2.0-Prozessor zu
Definitionsfiles für Daten in Neo4j, wie wir im Folgenden am Beispiel FileAccess zeigen (Ab-
bildung 6). Eine Lehre dabei war, dass eine optimale Darstellung der Ressourcenzugriffe meh-
rere Iterationen benötigt, um Duplikate in der Graphdarstellung zu vermeiden.

4 https://neo4j.com

https://neo4j.com/
https://neo4j.com/

Abschlussbericht SYSGO 01.04.2019-31.12.2022

 MZB-IDEA: Modular zertifizierbares Betriebssystem für Integrierte Design- und Entwicklungsumgebung für Aerospace

Abbildung 6: XSLT Stylesheet vmit4.xml nach Neo4j: Regeln für FileAccess

Nachdem Daten in Neo4j eingepflegt sind, kann man die durch eine spezifische Konfiguration
erzeugten Abhängigkeiten als Graphen darstellen. Abbildung 7 zeigt wie 3 Partitionen eines
FileProviderIntegrationsprojektes Ressourcenzugriff (hier: FileAccess-Zugriffe) teilen, dabei
gemeinsam auf einen Konsolentreiber („con_“) zugreifen.

Abschlussbericht SYSGO 01.04.2019-31.12.2022

 MZB-IDEA: Modular zertifizierbares Betriebssystem für Integrierte Design- und Entwicklungsumgebung für Aerospace

Abbildung 7: File-Nutzung durch Partitionen: Shared Konsole im Integrationsprojekt „File Pro-

vider“

In Neo4J können verbundene Partition mit der einer Match-Anfrage abgefragt werden, und es
werden alle drei Partitionen zurückgegeben (Abbildung 8).

Abbildung 8: Verbundene Partitionen

Wenn wir beispielsweise im Datenbankinterface (oder durch eine entsprechend geänderte
Konfiguration) diese Shared-Konsole von Partition 1 entfernen, dann sind erwartungsgemäß
nur noch zwei der Partitionen verbunden (Abbildung 9). Das zeigt, dass die Graphdatenbank
zur Darstellung von Interferenzen und Interferenzfreiheit durch Analyse der Konfigurationsda-
teien verwendet werden kann.

Abschlussbericht SYSGO 01.04.2019-31.12.2022

 MZB-IDEA: Modular zertifizierbares Betriebssystem für Integrierte Design- und Entwicklungsumgebung für Aerospace

Abbildung 9: Entfernung der Verbindungen von Partition 1

3 Notwendigkeit und Angemessenheit der geleisteten Arbeit

Die Arbeit war notwendig, weil sich bei bisherigen Avionikentwicklungen bei SYSGO zwar eine

große Erfahrung gesammelt hat, diese aber bisher in kleinem Rahmen mit Partnern diskutiert

wurden konnten (SYSGO agierte hier in der Regel als Auftragnehmer, der zwischen Anforde-

rungen der Hardware und den Anforderungen eines jeweils sehr spezifischen Gesamtsystems

vermitteln muss). MZB-IDEA erlaubte es SYSGO, in der (offeneren) Kommunikation eines

Forschungsprojekts die Produktfertigungskette speziell unter Berücksichtigung von MILS an

Partneranforderungen anzupassen.

Konkret wurden einerseits (1) Entwicklungen vorgenommen, die neuartige Fragestellungen in

fortgeschrittenen Avionik- und Aerospacesystemen (Memory-Partitionierung und gemischt-kri-

tische Systeme mit mehreren Partitionen sowie (2) Entwicklungs- und Modellierungsansätze

zu verbinden, und hier verschiedenen formales Ausdrucksmöglichkeiten zu erforschen. Die

Arbeiten zur Integration der Konfigurationsumgebung in formale Modelle wurden im Projekt

Admorph aufgegriffen, um Partitionsanalyse für GraphML zu machen.

Die SYSGO ist durch Abschluss dieses Projektes besser vorbereitet, den Luft- und Raumfahrt

Markt gezielt zu adressieren und sieht hier langfristiges Wachstumspotential. Dies wird die

langfristige Steigerung von Umsatz und Ertrag sowie die Sicherung vorhandener Arbeitsplätze

bei der SYSGO in Deutschland garantieren.

4 Fortschritt auf dem Gebiet des Vorhabens bei anderen Stellen

Es sind hinsichtlich des Teilvorhabens keine Fortschritte bei anderen Stellen bekannt.

Abschlussbericht SYSGO 01.04.2019-31.12.2022

 MZB-IDEA: Modular zertifizierbares Betriebssystem für Integrierte Design- und Entwicklungsumgebung für Aerospace

5 Erfolgte oder geplante Veröffentlichungen

• Oliver Kühlert, Mark Tootell, 2020, Compliance of the Common Criteria Evaluation with
the RTCA DO-356A Standard, Talk at Toulouse “Certification Together”
https://www.sysgo.com/blog/article/join-us-at-the-certification-together-in-toulouse ->
https://www.youtube.com/watch?v=1uTs3Es6ixU

• Bartakovic, D., Söding-Freiherr von Blomberg, A., Kühlert, O., Jukić, T., Fumaroli, G.,
Herpel, H.-J., Lopez Cueva, P., Carranza, J.-M., & Guy, Maxime. (2022). Use of Multi-
ple Independent Levels of Security and Safety (MILS) architecture for space on
memory protection unit (MPU)-based systems. DASIA.

Mario Brotz, Holger Blasum

https://www.youtube.com/watch?v=1uTs3Es6ixU

